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Bei Osteoporose handelt es sich
um eine degenerative Knochen-
krankheit, von der vorwiegend die
ältere Generation, insbesondere
Frauen nach der Menopause, betroffen ist.[1] Diese Stoff-
wechselkrankheit entsteht infolge eines Ungleichgewichts im
Knochenerneuerungsprozeû, wobei die Knochenresorption
gegenüber der Knochenneubildung überwiegt. Zur Zeit wird
Osteoporose mit einer histomorphometrischen Methode und
einer Messung der Knochendichte diagnostiziert.[2] Sowohl
die Bemühungen hinsichtlich der Vorbeugung dieser Krank-
heit als auch der Entwicklung einer effektiven antiresorptiven
Therapie förderten die Suche nach verläûlichen und nicht-
invasiven biochemischen Markern für die Knochenresorp-
tion.[1c, 3] Den traditionellen Assays auf Knochenresorptions-
marker, beispielsweise den Calcium-[4] und Hydroxyprolin-
Spiegel[5] im Harn, fehlen die klinische Empfindlichkeit und
Spezifität bei der Diagnostik der Osteoporose.

In den letzten Jahren gewannen die Pyridinium-Querver-
netzungen (�)-Pyridinolin (Pyd) 1[6] und (�)-Desoxypyridi-
nolin (Dpd) 3[7] an Bedeutung, da sie potentiell zur klinischen
Diagnose von Osteoporose und anderer Knochenkrankheiten
herangezogen werden können.[8±10] 1981 postulierten Scott
et al.[11] die Existenz der Pyrrol-Quervernetzungen Pyrrololin
(Pyl) 2 und Desoxypyrrololin (Dpl) 4 in verschiedenen
Geweben.[12] Andere Arbeitsgruppen lieferten in nachfolgen-
den Studien weitere überzeugende Hinweise auf die Existenz
von Pyrrol-Quervernetzungen.[13, 14] Unglücklicherweise schlu-
gen Versuche, die Quervernetzungen 2 und 4 zu isolieren,
bisher fehl.[3a,d] Man geht davon aus, daû 2 und 4 aus
neutralem (2S,5R)-Hydroxylysin und (S)-Lysin, die in Kolla-
gen enthalten sind, über einen von der Lysin-Oxidase
katalysierten enzymatischen Prozeû gebildet werden, ähnlich
wie bei der Entstehung der Pyridinium-Quervernetzungen 1
und 3.[3d, 13c,d,f] Hier beschreiben wir die erste Synthese der
Pyrrol-Quervernetzung (�)-Desoxypyrrololin (Dpl) 4 aus
(4S)-5-(tert-Butyloxy)-4-[(tert-butyloxycarbonyl)amino]-5-oxo-
pentansäure 7.

Die Synthese von 4 verläuft über eine Alkylierung des Pyr-
rolderivates (S,S)-(ÿ)-5 mit dem Alkyliodid (S)-(ÿ)-6, die an-
schlieûende hydrolytische Abspaltung der Schutzgruppen und
die Entfernung der 2-Carboxybenzylestergruppe (Schema 1).

Es war geplant, das Schlüsselintermediat (S,S)-(ÿ)-5 aus der
a-Acetoxynitroverbindung 13 (siehe Schema 2) und Isocyan-
essigsäurebenzylester 14[15, 16] über eine basenkatalysierte
Kondensation und Cyclisierung herzustellen. Die Verbindung
13 ist aus 7 zugänglich.

Käufliches (S)-7 wird in den entsprechenden Aldehyd (S)-
(ÿ)-8 überführt,[17] der dann mit NaBH4 in MeOH in 95 %
Ausbeute zum Alkohol (S)-(ÿ)-9 reduziert wird (Sche-
ma 2).[18] Die Hydroxygruppe in (S)-(ÿ)-9 wird durch ein
Iodatom ersetzt (!(S)-(ÿ)-10), welches anschlieûend durch
Umsetzen mit Natriumnitrit in DMF[19] die entsprechende
Nitroverbindung (S)-(ÿ)-11 in 55 % Ausbeute liefert. Bei der
Kondensation von (S)-(ÿ)-11 mit dem Aldehyd (S)-(ÿ)-8
(Henry-Reaktion)[20] in Gegenwart von 4-Dimethylaminopy-
ridin in CH2Cl2 entsteht die a-Hydroxynitroverbindung 12 in
91 % Ausbeute als Diastereomerengemisch (Verhältnis 1:1).
Da die beiden neuen chiralen Zentren (mit der NO2- und OH-
Gruppe) in 12 am Ende während der Bildung des Pyrrolrings
verschwinden, wird 12 als Diastereomerengemisch eingesetzt.
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Schema 1. Retrosynthese von (�)-Desoxypyrrololin (Dpl) 4. Bn�Benzyl, Boc� tert-Butyloxycarbonyl.
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Zunächst wird 12 mit Ac2O in THF nahezu quantitativ (96%)
in das entsprechende Essigsäurederivat 13 überführt. Schlieû-
lich erhält man durch Kondensation des Diastereomerenge-
misches der a-Acetoxynitroverbindung 13 und Isocyanessig-
säurebenzylester 14[15, 16] in Gegenwart von DBU in THF bei
0 8C!Raumtemperatur und säulenchromatographischer Rei-
nigung an Kieselgel das Schlüsselintermediat (S,S)-(ÿ)-5 in
57 % Ausbeute ([a]23

D�ÿ14.9 (c� 1.37 in MeOH)).
Der nächste Schritt der Synthese von (�)-4 umfaûte die

Einführung der Lysinseitenkette am Pyrrol-Stickstoffatom in
(S,S)-(ÿ)-5 über eine Alkylierung mit 6. Das Alkyliodid (S)-
(ÿ)-6 wird aus dem Aldehyd (S)-(ÿ)-8 in drei Stufen
hergestellt (Schema 3). Zuerst wird (S)-(ÿ)-8 in einer Wit-

tig-Reaktion[17] um eine Methylengruppe
verlängert; es entsteht das entsprechende
Olefin (S)-(ÿ)-15, das durch Hydroborie-
rung in hervorragender Ausbeute in den
Alkohol (S)-(ÿ)-16 überführt wird. Die
Hydroxygruppe von (S)-(ÿ)-16 wird dann
mit I2, PPh3 und Imidazol in THF in 92 %
Ausbeute in das gewünschte Iodid (S)-(ÿ)-
6 umgewandelt. Die Behandlung von (S,S)-
(ÿ)-5 mit 1.0 ¾quivalenten tBuOK in THF
und die anschlieûende Reaktion mit 2.0
¾quivalenten (S)-(ÿ)-6 in Gegenwart von
[18]Krone-6[21] bei Raumtemperatur liefert
nach Säulenchromatographie an Kieselgel
das N-alkylierte Pyrrolderivat (ÿ)-17 in
42 % Ausbeute.[22] (ÿ)-17 ist an den Posi-
tionen 1, 3 und 4 des Pyrrolrings mit den
erforderlichen Aminosäuren substituiert.
Zur Synthese von (�)-Dpl 4 ist dann nur
noch die Abspaltung der Schutzgruppen
und die Entfernung der Benzyloxycarbo-

nylgruppe in Position 2 des Pyrrolrings erforderlich. Dazu
wird (ÿ)-17 zunächst mit Trifluoressigsäure und Wasser
umgesetzt[9a] und das dabei erhaltene Gemisch durch präpa-
rative Reversed-phase(RP)-HPLC gereinigt; man erhält (�)-
18 in 79 % Ausbeute. Durch Hydrierung über 10 % Pd/C in
MeOH wird die Benzylgruppe von (�)-18 entfernt; die dabei
entstandene Carbonsäure 19 wird ohne weitere Reinigung
direkt mit Trifluoressigsäure decarboxyliert.[23] Nach Ein-
engen des Reaktionsgemisches, Reinigung durch präparative
RP-HPLC und Lyophilisierung erhält man 4[24] in 39% Aus-
beute als blaûrosa Pulver ([a]23

D ��20.6 (c� 0.17 in H2O)).
Wir haben eine allgemein anwendbare, konvergente Total-

synthese von (�)-Desoxypyrrololin (Dpl) 4, einer Querver-
netzung in Kollagen, entwickelt, bei
der ein käufliches chirales Edukt (7)
eingesetzt wird. Die Methode wird
momentan auf die Synthese von Pyrro-
lolin 2 sowie verschiedene immunolo-
gisch wichtige Verbindungen (Immu-
nogene, Antikörper und Sonden) über-
tragen, die für die Entwicklung von
Assays zur Diagnose und Behandlung
von Knochenkrankheiten benötigt wer-
den.
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Schema 2. Synthese von (S,S)-(ÿ)-5. a) Siehe Lit. [17]; b) NaBH4 (1.0 ¾quiv.), MeOH, 0 8C,
45 min, 95 %; c) I2 (1.5 ¾quiv.), PPh3 (1.6 ¾quiv.), Imidazol (2.0 ¾quiv.), THF, 23 8C, 1.5 h, 94 %;
d) NaNO2 (2.0 ¾quiv.), DMF, 23 8C, 30 min, 55 %; e) (S)-(ÿ)-8 (1.1 ¾quiv.), DMAP, (4.0 ¾quiv.),
CH2Cl2, 23 8C, 8 d, 91%; f) Ac2O (1.5 ¾quiv.), DMAP (0.1 ¾quiv.), THF, 23 8C, 2 h, 96 %;
g) BnO2CCH2NC 14 (1.3 ¾quiv.), DBU (2.5 ¾quiv.), THF, 0 ± 23 8C, 5 h, 57%. ± DBU� 1,8-
Diazabicyclo[5.4.0]undec-7-en, DMAP� 4-Dimethylaminopyridin.

Schema 3. Synthese von (�)-4. a) MePPh3Br (2.0 ¾quiv.), nBuLi (2.0 ¾quiv.), THF, 0 8C, 45 min,
61%; b) B2H6 ´ THF (1.3 ¾quiv.), THF, 0!23 8C, 17 h, 87%; c) I2 (1.5 ¾quiv.), PPh3 (1.6 ¾quiv.),
Imidazol (2.0 ¾quiv.), THF, 23 8C, 1 h, 92%; d) (S,S)-(ÿ)-5, tBuOK (1.0 ¾quiv.), [18]Krone-6
(0.1 ¾quiv.), THF, 23 8C, 7 h, 42%; e) TFA/Wasser (95:5), 23 8C, 2 h, 79 %; f) 10 % Pd/C, H2, MeOH,
23 8C, 1 h, dann TFA, 23 8C, 15 min, 39%. ± TFA�Trifluoressigsäure.
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Die Fluvirucine, eine Klasse von Makrolactam-Antibiotika,
die von Actinomyces-Arten produziert werden, haben wegen
ihrer interessanten Strukturen und vielversprechenden bio-
logischen Eigenschaften Aufmerksamkeit erregt.[1] Fluviru-
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